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ABSTRACT

In structural brain MRI, group differences or changes in brain
structures can be detected using Tensor-Based Morphometry
(TBM). This method consists of two steps: (1) a non-linear
registration step, that aligns all of the images to a common
template, and (2) a subsequent statistical analysis. The nu-
merous registration methods that have recently been devel-
oped differ in their detection sensitivity when used for TBM,
and detection power is paramount in epidemological studies
or drug trials. We therefore developed a new fluid registration
method that computes the mappings and performs statistics
on them in a consistent way, providing a bridge between TBM
registration and statistics. We used the Log-Euclidean frame-
work to define a new regularizer that is a fluid extension of the
Riemannian elasticity, which assures diffeomorphic transfor-
mations. This regularizer constrains the symmetrized Jaco-
bian matrix, also called the deformation tensor. We applied
our method to an MRI dataset from 40 fraternal and identical
twins, to revealed voxelwise measures of average volumetric
differences in brain structure for subjects with different de-
grees of genetic resemblance.

Index Terms— Registration, Brain Imaging, MRI, Ge-
netics, Statistical analysis

1. INTRODUCTION

Nonlinear registration of MRI images is a challenging subject
with a broad range of applications, such as multimodality
registration for diagnosis and surgical planning, tracking
brain development or degeneration over time, or alignment
of multi-subject functional or structural images to detect sys-
tematic differences between populations.

More particularly, for analysis of brain structure, Tensor
Based Morphometry (TBM) [8, 21, 2] is an increasingly used
method that non rigidly registers a set of brain images to a
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common template, from which vector fields are obtained and
statistically analyzed to detect morphometric differences in
disease, development or drug trials. The two crucial steps in
TBM are the registration process and the statistical analysis.
TBM studies generally compute a similarity term between a
target and a deforming image and introduce the gradient of
this term as a driving force in continuum mechanical equa-
tions, considering the deforming image as an elastic [9] or
viscous fluid medium [7]. These mechanical equations reg-
ularize the deformation, enforcing desirable properties such
as smoothness, invertibility and inverse-consistency. The
similarity term may be a simple summed squared intensity
difference (L?-norm) between two images, or may involve
cross-correlation or information-theoretic measures, such
as the mutual information or Jensen-Rényi divergence [6].
Although regularizers for template matching were first devel-
oped by analogy with mechanical theory, many approaches
incorporated statistical information in the deformation pro-
cess.

Early registration work regarded the regularizer as an energy
density or Gibbs prior distribution on the space of map-
pings, whose parameters could be learned empirically [10]
or based on smoothness or stability considerations (as in
Tikhonov regularization). In [11], a Bayesian model was
used that incorporated a statistical prior distribution on the
deformation embodied in stochastic partial differential equa-
tions (PDEs). Later, this work was integrated into the large
deformation diffeomorphic metric mapping model [16] that
computes energies from the velocity fields of the deformation,
their extrema being geodesics in groups of diffeomorphisms
matching anatomies.

In [17], Pennec ef al. developed a new elastic registration
method in which the regularizer was computed using Log-
Euclidean metrics [1]. This prior regularizes anisotropic
deformations (i.e., ones with a preferred direction locally)
as well as volumetric gains and losses, as it penalizes the
whole deformation tensor, ¥ = (V(u))TVﬁ, where « is the
displacement. The deformation matrices, X, are symmetric
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positive-definite matrices and form a cone in the space of 3x3
real-valued matrices. The Log-Euclidean framework of [1]
allows simple computations to be made intrinsically on this
manifold. The Log-Euclidean Riemannian elasticity was thus
chosen to replace the standard elastic prior based on Hooke’s
law (Saint-Venant Kirchhoff elasticity)

ReQSVKE(U) = f %TT((E — Id)z) +
Regrp (i) = %dist%ucl(log(E),log(ld))

Tr(X — Id)?
1 [ 1og(D)I1?

” ool

Here we extend this elastic registration method proposed
in [17] to a 3D fluid version, that allows for large deforma-
tion while preserving diffeomorphic properties (i.e., a smooth
invertible map; see [7]). Instead of regularizing 3, we apply
the Riemannian prior to the velocity field ' (derivative of ).
A 2D version of the algorithm was first implemented in [4],
where we showed that, in 2D, the fluid Riemannian prior was
more sensitive than the Euclidean prior in a subsequent multi-
variate analysis on the deformation tensors v/ J7.J, where .J is
the Jacobian matrix of the transformation (see [14], for more
insight on the statistical method). In this paper, we developed
a fast and optimized 3D Log-Euclidean fluid code to register
40 brain MR images from a dataset of 10 pairs of fraternal
twins (DZs) and 10 pairs of identical twins (MZs) to a com-
mon template. The resulting vector fields were analyzed to
map genetic influences on regional brain volumes. In ongo-
ing work, spatial maps are being developed to understand the
differential influences of genes versus environment on brain
shape and morphology [20]. For example, total brain volume
is under strong genetic control [22]. In [23] we mapped ge-
netic influences on brain structure, revealing the heritability of
gray matter volumes in the frontal lobes (see also [13]) and in
language-related areas. Once identified, heritable patterns of
brain structure may be used to create image-derived measures
for discovering specific genetic polymorphisms that influence
human brain morphology.

2. METHOD

2.1. Subjects

3D Tl1-weighted images were acquired from 10 pairs of
monozygotic twins (MZ) and 10 pairs of same-sex dizygotic
twins (DZ) (4 male pairs and 6 female pairs per group; age
range 22 — 25 years) on a 4 T Brucker Medspec whole body
scanner (CMR, Brisbane, Australia). DNA tests were per-
formed to confirm zygosity. An MP-RAGE 3D T1-weighted
sequence was used ('R = 2500ms, TE = 3.83ms,
TI = 1500ms, pulse angle = 15°, coronal orientation, FOV
23022302230mm?). The study was approved by the Institu-
tional Review Boards at the University of Queensland and at
UCLA,; each subject signed a formal consent.
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2.2. Registration Method

In elastic registration, a force (i.e., the gradient of the simi-
larity term between two images, with respect to the local dis-
placement field) is computed at each voxel and is embodied in
a Navier-Lamé equation through which the displacement field
4 is iteratively computed. For small displacements, the defor-
mation remains smooth and invertible because of the presence
of restoring (regularizing) forces. Fluid registration, on the
other hand, preserves the one-to-one mapping even for large
deformations. A velocity field v is computed at each time
step (for example through a Navier-Poisson equation [7]) and
(in a so-called greedy algorithm) is integrated over time to
get the displacement field . Other velocity-based approaches
such as LDDMM [16] and symmetric normalization [3] either
regularize using a velocity norm on the full space-time path
to generate a deformation that is globally optimal in time,
or they use an approach known as geodesic shooting [16].
The simplest Log-Euclidean version of this regularizer is the
Isotropic Riemannian Elasticity Regrg (i), that measures the
deformation of X from the identity. Likewise, we constrain
the fluid-like deforming image through (Vo+I1d)T (Vi+Id).
The velocity at each voxel is given by the force from the sim-
ilarity constraint and the regularizer:

(7, )
dt

—Fy VRegriem (U, t)
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with A and p are the Lamé coefficients and

—
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the similarity term based on the squared-intensity difference
(here we choose the L2-norm as our images have comparable
intensity distributions).

2.3. Analysis

We tested our implementation of the Riemannian Fluid
method on an MRI dataset from monozygotic (MZ) and
dizygotic (DZ) twin pairs. Each image was registered to a
common template. We used a specific subjects image rather
than a Mean Deformation Template (MDT) as the sharper
features in an individual brain image may allow for a more
accurate registration, which may in turn improve detection
power. In [6], the template from an individual control subject
outperformed the average ICBMS53 atlas brain as a registra-
tion target image for TBM. For each subject, the computation
of the displacement field took 2 hours on a dual-processor
(64-bit 2.4 gigahertz AMD Opteron CPUs with 8 gigabytes



of memory). Then, the Jacobian matrices were computed at
each voxel. Two values were derived: the determinant of the
Jacobian matrix (commonly called the Jacobian), which mea-
sures volume expansion and shrinkage, and the tangent of the
geodesic anisotropy, which measures the local anisotropy of
the structural differences (i.e., whether the relative elongation
or contraction of anatomy is more pronounced in any specific
direction). For these two quantities det and tG A, we com-
puted the average differences among MZ pairs and among DZ
pairs, to determine whether the resemblance in brain struc-
ture between individuals depends on their degree of genetic
relatedness. It will also be possible in future, as in our past
studies, to compute heritability estimates [23], i.e., maps of
the genetic contribution to the variance in a population, for
measures such as regional volumes of brain structures (here
derived from TBM). In this initial study of N=40 twins, we
preferred to create maps of average intrapair differences as
these are fairly intuitive and converge in small samples; we
will fit full structural equation models once more twins are
available; variance components and genetic parameter esti-
mates depend on ratios of variances from nested models, and
are known to be highly unstable in samples of only 10 pairs
of each zygosity [23].

3. RESULTS

Figure 1 shows a typical result from registering an individual
image to the common template; the difference image shows
minimal differences between the warped reference and target
images. This suggests registration accuracy is good, although
further formal verification with anatomical landmarks is nec-
essary. Figure 2 shows that the algorithm is also recovering
morphometric differences that have substantial face validity.
The average difference in brain structure volumes between
MZ twins would be expected to be less that that between DZ
twins, as the MZ twins are genetically identical. This is the
case, based on maps of the mean absolute difference in the
Jacobians, averaged across 10 twin pairs per group. In addi-
tion, there is substantial anatomical detail in the mean maps,
as shown in the white matter tracts that thread into the oc-
cipital lobes, and in the internal capsules, which are clearly
visible as white matter tracts running through the basal gan-
glia. Overall, these maps appear sensitive to true differences
in anatomy. Although there is no independent ground truth as
to what the true differences in anatomy are across large num-
bers of subjects, it is consistent with genetic hypotheses that
differences would be less, on average, in identical than frater-
nal twins, and this is visually confirmed by the maps. Future
studies in large samples will evaluate this hypothesis using
structural equation models to test for additive genetic effects
at each image voxel.
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4. DISCUSSION

This work unifies two emerging directions in computational
anatomy: (1) Log-Euclidean methods, which have been pro-
posed for performing statistics on tensors using a metric
adapted to the tensor manifold geometry; and (2) diffeo-
morphic image registration, in which a template velocity
field is regularized to ensure that mappings across subjects
have no folds or tears (positive Jacobian property). TBM
methods have typically plotted maps of the Jacobian deter-
minant (which encode volume changes), but morphomet-
ric differences are more powerfully detected by analyzing
the full deformation tensor in a Log-Euclidean space [14],
which is sensitive to directional or anisotropic effects. Given
this, it is logical to regularize the deformation energy in a
Log-Euclidean space, to be consistent with the subsequent
multivariate statistical analysis. This paper does this in a
large-deformation setting, which also ensures that mappings
are diffeomorphic. Future directions include: (1) extension
to an LDDMM or geodesic shooting framework, where the
paths are optimal in time, rather than only at each iteration,
and form geodesics on the space of diffeomorphisms; (2)
inclusion of empirical statistics on the local strain; and (3)
comparison of priors for tracking disease progression and
factors that modulate it in clinical studies.
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Fig. 1. Registration of a typical healthy subjects brain MRI
top left to that of another subject top right. Axial sections
through the warped image bottom left and the difference im-
age after registration bottom right indicate the registration
accuracy.

Fig. 2. Images of the mean absolute difference in regional
volumes (based on the Jacobian determinant) in the 20 MZ
twin pairs top left and 20 DZ twin pairs top right show that
MZ twins resemble each other to a great extent in regional
volumes of brain substructures, especially in the deep white
matter. Red colors in the deep white matter of the DZ group
show that volumes vary by up to 50% between DZ twins for
some regions. The lower mean absolute difference in volumes
for MZ twin pairs fits with our prior expectation that their ge-
netic affinity leads to greater structural resemblance (this re-
quires formal testing and verification in a larger sample). Cor-
responding images for the tG A, a measure of the anisotropy
of volumetric differences, are more similar for MZ and DZ
pairing, perhaps suggesting that this more abstract parameter
is under lesser genetic control.



